JOURNAL OF APPROXIMATION THEORY 55, 241-247 (1988)

Structure of Weak Descartes Systems

D. ZWICK

Department of Mathematics, University of Vermont, Burlington, Vermont 05405, U.S.A.

Communicated by Oved Shisha

Received October 30, 1985

A weak Descartes system is a basis of functions such that every ordered subset is a weak Tchebycheff system, the canonical example being the usual spline basis involving truncated power functions. By examining the intervals of degeneracy for a WD-system, we show that it is possible to produce a new basis that has a simple and convenient structure similar to the spline basis. © 1988 Academic Press, Inc.

In this paper we will apply results on degeneracy in WT-spaces, some of which were developed in [7], in order to investigate the structure of elements in a weak Descartes system.

DEFINITION 1. Let $u_0, ..., u_n$ be real-valued functions defined on a compact interval [a, b]. $\{u_0, ..., u_n\}$ is called a *weak Descartes* (WD) system if $\{u_{i_1}, ..., u_{i_k}\}$ forms a WT-system for all $0 \le i_1 < \cdots < i_k \le n$. If each of these subsystems is a T-system then $\{u_0, ..., u_n\}$ is called a *Descartes* (D) system.

We recall that $\{u_0, ..., u_n\}$ is a WT-system on [a, b] if

$$\binom{u_0, ..., u_n}{x_0, ..., x_n} = \det \{ u_i(x_j) \}_{i, j=0}^n \ge 0$$

for all $a \le x_0 < \cdots < x_n \le b$. If these determinants are all positive then $\{u_0, ..., u_n\}$ is a T-system; it is a complete T-system if $\{u_0, ..., u_k\}$ is a T-system for k = 0, ..., n. It follows from Definition 1 that every element in a WD-system is nonnegative and every element in a D-system is positive.

D-systems and WD-systems have been investigated by Karlin and Studden [2] and by Krein and Nudel'man [3], among others. They were apparently introduced by Bernstein [1] and are so called because Descartes' rule of signs holds for elements in the linear span of a D-system (see [2]). According to this rule a function has at most the same number of zeros as its sequence of coefficients has sign changes. For WD-systems a similar result holds with "zeros" replaced by "sign changes."

241

D. ZWICK

Bernstein [1] considered approximation by elements in the span of a D-system; this subject was taken up again by Smith [6]. Micchelli characterized best uniform approximation by elements in the span of a WD-system [5] (there the term "weak Markoff system" was used).

DEFINITION 2. Let U be a linear space of functions defined on [a, b]. U is called *degenerate* if a nontrivial element vanishes on an open subinterval of [a, b]; otherwise U is called *nondegenerate*. A subinterval on which a nontrivial element vanishes is called a *degenerate interval* for U. If U has a degenerate interval of the form $[a, \xi]$ we will say U is *a-degenerate*; if U has a degenerate interval of the form $[\xi, b]$ we will call U b-degenerate.

A basis $\{u_0, ..., u_n\}$ will be referred to as degenerate when span $\{u_0, ..., u_n\}$ is degenerate. Clearly, T-systems are nondegenerate; indeed, it is elementary that $\{u_0, ..., u_n\}$ is degenerate on an interval *I* if and only if

$$\binom{u_0, \dots, u_n}{x_0, \dots, x_n} = 0$$

for all $x_0 < \cdots < x_n$ in *I*.

Our first result concerns zeros of elements of a WD-system.

LEMMA 1. Let $\{u_0, ..., u_n\}$ be a WD-system on [a, b] and let $U = \operatorname{span}\{u_i\}_{i=0}^n$.

(1) If U is not b-degenerate then $\mathscr{Z}(u_i; [a, b)) \subseteq \mathscr{Z}(u_{i+1}; [a, b))$ (i = 0, ..., n - 1), where $\mathscr{Z}(u; [a, b))$ denotes the zeros of u in [a, b).

(2) If U is not a-degenerate then $\mathscr{Z}(u_i; (a, b]) \subseteq \mathscr{Z}(u_{i-1}; (a, b])$ (i = 1, ..., n).

(3) If U is neither a-degenerate nor b-degenerate then $\mathscr{Z}(u_i; (a, b)) = \mathscr{Z}(u_{i+1}; (a, b))$ (i = 0, ..., n-1).

Proof. (1) Assume that $u_i(x_0) = 0$ for some $x_0 \in [a, b)$ and some $0 \le i \le n-1$. As U is not b-degenerate, there is an $x_1 \in (x_0, b]$ such that $u_i(x_1) > 0$. Since $\{u_i, u_{i+1}\}$ forms a WT-system we have

$$0 \leq \binom{u_i, u_{i+1}}{x_0, x_1} = -u_i(x_1) \cdot u_{i+1}(x_0);$$

hence, since u_{i+1} is nonnegative, $u_{i+1}(x_0) = 0$.

Part (2) is proved similarly and part (3) is an immediate consequence of the first two parts.

The statements in the following lemma appear in [7] and follow readily from [4, Lemma 1].

LEMMA 2. If $\{u_0, ..., u_{n-1}\}$ is a T-system on [a, b] and $\{u_0, ..., u_{n-1}, u_n\}$ is a WT-system, then $\{u_0, ..., u_n\}$ is either degenerate or else a T-system on [a, b]. In the former case there is an interval $I \subset [a, b]$ and a unique $p \in \text{span}\{u_0, ..., u_{n-1}\}$ such that $u_n - p \equiv 0$ on I, $u_n - p > 0$ to the right of I, and $(-1)^n(u_n - p) > 0$ to the left of I.

THEOREM 1. Let $\{u_0, ..., u_n\}$ be a nondegenerate WD-system on [a, b]. If $u_i(a) > 0$, $u_i(b) > 0$ (i = 0, ..., n), and at least one of the u_i is positive on [a, b], then $\{u_0, ..., u_n\}$ is a D-system.

Proof. By Lemma 1 and the assumptions on $u_0, ..., u_n$, it follows that $u_i > 0$ (i = 0, ..., n). For any $0 \le i_1 < \cdots < i_k \le n$ we may now apply Lemma 2 successively to $\{u_{i_1}, ..., u_{i_j}\}$ (j = 2, ..., k) to show that $\{u_{i_1}, ..., u_{i_k}\}$ is a (complete) T-system on [a, b] ($\{u_{i_1}\}$ is a one-dimensional T-system since $u_{i_1} > 0$). Hence $\{u_0, ..., u_n\}$ is a D-system.

COROLLARY 1. If $\{u_0, ..., u_n\}$ is a nondegenerate WD-system on [a, b] with $u_0 > 0$ and $u_i(a) > 0$ (i = 1, ..., n) then $\{u_0, ..., u_n\}$ is a D-system on [a, b].

Proof. From Lemma 2, $\{u_0, u_i\}$ is a T-system of dimension 2, from which it follows that u_i/u_0 is strictly increasing for i = 1, ..., n. In particular, $u_i(b) > 0$ (i = 1, ..., n). Corollary 1 now follows from Theorem 1.

THEOREM 2. Let $\{u_1, ..., u_n, v_1, ..., v_r\}$ be a WD-system on [a, b] such that $\{u_1, ..., u_n\}$ is a T-system, and assume that $u_1(b) > 0$. Then the following statements are valid:

(1) $\{u_1, ..., u_n\}$ is a complete T-system; if $u_i(a) > 0$ (i = 2, ..., n) then $\{u_1, ..., u_n\}$ is a D-system. In any case, $u_2, ..., u_n$ are positive in (a, b].

(2) If for some $2 \le i \le n$, $u_i(a) = 0$ then $u_j(a) = 0$ for all j = i, ..., n and $v_j(a) = 0$ for all j = 1, ..., r.

Proof. We observe that $u_1 > 0$ in [a, b) since otherwise Lemma 1 implies that the u_i 's share a common zero, an impossibility for a T-system. Thus u_1 is positive in [a, b] and we can use Lemma 2 (as in the proof of Theorem 1) to show that $\{u_1, ..., u_n\}$ is a complete T-system. If, in addition, $u_i(a) > 0$ (i = 1, ..., n), then, by Corollary 1, $\{u_1, ..., u_n\}$ is a D-system. In any case, $u_2, ..., u_n$ must be positive in (a, b] since $u_1 > 0$ implies that $\{1, u_i/u_1\}$ is a T-system for each i = 2, ..., n, so that u_i/u_1 is strictly increasing in [a, b]. This proves part (1). Part (2) follows from the proof of Lemma 1, since $u_i(b) > 0$ (i = 1, ..., n).

D. ZWICK

If $\{u_0, ..., u_n\}$ is a WD-system on [a, b] with $u_0 > 0$ then, by Lemma 2, $\{u_0, u_1\}$ is either degenerate or else a T-system. Applying this analysis repeatedly, we see that there is a largest integer $k \ge 1$ such that $\{u_0, ..., u_{k-1}\}$ is a T-system (and thus a complete T-system). The classic example of such a system of functions is the basis

$$\{1, x, ..., x^{n-1}, (x-\xi_1)^{n-1}_+, ..., (x-\xi_r)^{n-1}_+\}$$

for the splines of degree n-1 on [0, 1] with simple knots $\xi_1, ..., \xi_r$ (see [5]). Here $(x - \xi)_+^{n-1}$ is a truncated power function and equals $(x - \xi)^{n-1}$ for $x > \xi$ and is zero elsewhere. In order for this basis to be a WD-system it is crucial that $0 < \xi_1 < \cdots < \xi_r < 1$. Define $u_i(x) = x^{i-1}$ (i = 1, ..., n) and $v_i(x) = (x - \xi_i)_+^{n-1}$ (i = 1, ..., r). We observe that, for each $1 \le i \le r$, $\{u_1, ..., u_n, v_i\}$ is a degenerate WT-system, being degenerate both on $[0, \xi_i]$ and on $[\xi_i, 1]$. Moreover, as just noted, $\{\xi_i\}_{i=1}^r$ is an increasing sequence. Presently, we will demonstrate that these phenomena are intrinsically related to the weak Descartes nature of the spline basis.

DEFINITION 3. A linear space U is said to be maximally degenerate on an interval I if it is degenerate on I but not on any interval strictly containing I.

Note that there may be many intervals on which U is maximally degenerate. If U comprises only continuous functions, then all maximal degenerate intervals of U are closed.

LEMMA 3. Let $\{u_1, ..., u_n, v_1, ..., v_r\}$ be a WT-system on [a, b] such that $\{u_1, ..., u_n\}$ is a T-system and assume that, for some $1 \le i \le r$, $\{u_1, ..., u_n, v_i\}$ is maximally degenerate on an interval I whose interior is (α, β) . Then the following statements are valid:

(1) If I excludes b then $\{u_1, ..., u_n, v_j\}$ is degenerate on I for each j = i, ..., r.

(2) If I excludes a then $\{u_1, ..., u_n, v_j\}$ is degenerate on I for each j = 1, ..., i.

(3) If I excludes both a and b then $\{u_1, ..., u_n, v_{i-1}\}$ is either maximally degenerate on I or degenerate (at least) on $(\alpha, b]$ and $\{u_1, ..., u_n, v_{i+1}\}$ is either maximally degenerate on I or degenerate on $[a, \beta]$.

Proof. (1) Choose points $x_1 < \cdots < x_{n+1}$ in *I*. By Lemma 2, we may assume that $v_i \equiv 0$ on *I* and $v_i(b) > 0$. Then for $i < j \le r$

$$0 \leq \binom{u_1, ..., u_n, v_i, v_j}{x_1, ..., x_{n+1}, b} = -v_i(b) \cdot \binom{u_1, ..., u_n, v_j}{x_1, ..., x_{n+1}}.$$

Hence, since $\{u_1, ..., u_n, v_i\}$ is a WT-system, it follows that

$$\binom{u_1, ..., u_n, v_j}{x_1, ..., x_{n+1}} = 0$$

for all $x_1 < \cdots < x_{n+1}$ in I and so $\{u_1, ..., u_n, v_j\}$ is degenerate on I.

(2) As before, we may assume that $v_i \equiv 0$ on *I* and, in this case, $(-1)^n v_i(a) > 0$. The proof now proceeds as in (1).

(3) By (2), $\{u_1, ..., u_n, v_{i-1}\}$ is degenerate on *I*. Suppose it is not maximally degenerate there and not degenerate on $(\alpha, b]$. Then, by (1), $\{u_1, ..., u_n, v_i\}$ must be degenerate on some interval properly containing *I*, a contradiction to the maximality of *I*. Similarly, it follows from (2) that $\{u_1, ..., u_n, v_{i+1}\}$ is either maximally degenerate on *I* or ese degenerate on $[a, \beta)$.

THEOREM 3. Let $\{u_1, ..., u_n, v_1, ..., v_r\}$ be a WT-system of continuous functions on [a, b] such that $\{u_1, ..., u_n\}$ is a T-system¹ and such that, for all $1 \le i_1 < \cdots < i_k \le r$, $\{u_1, ..., u_n, v_{i_1}, ..., v_{i_k}\}$ is a WT-system. Then there exist elements $\tilde{v}_1, ..., \tilde{v}_r$ such that $\{u_1, ..., u_n, \tilde{v}_1, ..., \tilde{v}_r\}$ is a basis for span $\{u_1, ..., u_n, v_1, ..., v_r\}$ with the following properties:

(1) $\{u_1, ..., u_n, \tilde{v}_{i_1}, ..., \tilde{v}_{i_k}\}$ is a WT-system for all $1 \leq i_1 < \cdots < i_k \leq r$.

(2) The indices $\{1, ..., r\}$ may be partitioned into three segments (some possibly empty) such that

(a) for each j in the first segment $\tilde{v}_j \equiv 0$ on an interval $[\alpha_j, b]$ and $(-1)^n \tilde{v}_j > 0$ in $[a, \alpha_j)$;

(b) either $\{u_1, ..., u_n, \tilde{v}_j\}$ is a T-system for every j in the second segment, or else there is an interval $[\alpha, \beta]$, $a < \alpha < \beta < b$, on which every \tilde{v}_j associated with the second segment vanishes, $\tilde{v}_j > 0$ in $(\beta, b]$, and $(-1)^n \tilde{v}_j > 0$ in $[a, \alpha)$;

(c) for each j in the last segment \tilde{v}_j vanishes on an interval $[a, \beta_j]$ and $\tilde{v}_j > 0$ in $(\beta_j, b]$.

(3) The sequences $\{\alpha_j\}$ and $\{\beta_j\}$ are nondecreasing and satisfy $\max_j \alpha_j \leq \alpha \leq \beta \leq \min_j \beta_j$.

Proof. For every $1 \le j \le r$ for which $\{u_1, ..., u_n, v_j\}$ is nondegenerate (and hence a T-system) define $\tilde{v}_j = v_j$. Otherwise, $\{u_1, ..., u_n, v_j\}$ is maximally degenerate on some closed interval $[\alpha_j, \beta_j]$. Choosing such an interval, we define $\tilde{v}_j = v_j - p_j$, with $p_j \in \text{span}\{u_1, ..., u_n\}$ as in Lemma 2. Then, for any $1 \le i_1 < \cdots < i_k \le r$ and $a \le x_1 < \cdots < x_{n+k} \le b$,

$$0 \leq \binom{u_1, ..., u_n v_{i_1}, ..., v_{i_k}}{x_1, ..., x_{n+k}} = \binom{u_1, ..., u_n, \tilde{v}_{i_1}, ..., \tilde{v}_{i_k}}{x_1, ..., x_{n+k}},$$

¹ Theorem 3 will normally be applied when n is maximal in this respect.

which proves (1). By Lemma 3, we may select the intervals $[\alpha_j, \beta_j]$, and thus the corresponding elements \tilde{v}_j , so that all \tilde{v}_j such that $\{u_1, ..., u_n, v_j\}$ is *b*-degenerate (briefly, "*b*-degenerate elements") come first, followed by nondegenerate elements or else a sequence of elements all maximally degenerate on the same interior interval, and finally any *a*-degenerate elements. The sign structure of these elements is dictated by Lemma 2. This proves part (2) of Theorem 3. By our choice of intervals $[\alpha_j, \beta_j]$ and from Lemma 3 it follows that, excluding those α_j equal to *a* and those β_j equal to *b*, the α_j and the β_j form nondecreasing sequences with $\max_j \alpha_j \leq \alpha \leq \beta < \min_j \beta_j$.

Remarks. (1) A result similar to Theorem 3 holds when continuity is not assumed. In that case, of course, the intervals of degeneracy need not be closed.

(2) It follows from Lemma 3 that if $\{\tilde{v}_1, ..., \tilde{v}_r\}$ contains any "nondegenerate elements" (as in Theorem 3 (2b)) then the \tilde{v}_j are unique. For if \tilde{v}_i is nondegenerate then, for $j \ge i$, \tilde{v}_j may only be nondegenerate or *a*-degenerate, and for $j \le i$ only nondegenerate or *b*-degenerate. Thus, by the uniqueness of the p_i only one choice is possible for the \tilde{v}_i (j=1, ..., r).

(3) If, in Theorem 3, $\{u_1, ..., u_{n-1}\}$ is a T-system as well, then any v_j , such that $\{u_1, ..., u_n, v_j\}$ is degenerate on an interval excluding a, must "involve" u_n in the sense that $p_j = \sum_{i=1}^n a_i u_i$ with $a_n \neq 0$ (otherwise span $\{u_1, ..., u_n\}$ would be degenerate). Hence if $\{u_1, ..., u_{n-1}, v_1, ..., v_r\}$ satisfies the assumptions of Theorem 3, then the \tilde{v}_i corresponding to this system are all either nondegenerate or a-degenerate. This indicates that if it is possible to "insert" a function u_{n+1} into the system $\{u_1, ..., u_n, v_n, v_1, ..., v_r\}$ such that the new system satisfies the assumptions of Theorem 3, then the only possibility is that $\tilde{v}_1, ..., \tilde{v}_r$ are all nondegenerate or a-degenerate.

EXAMPLE 1. We return to the spline basis

$$\{1, x, ..., x^{n-1}, (x-\xi_1)^{n-1}_+, ..., (x-\xi_r)^{n-1}_+\}$$

for $x \in [0, 1]$ and $0 < \xi_1 < \cdots < \xi_r < 1$. As remarked earlier, this basis forms a WD-system on [0, 1]. We observe first that $\{1, x, ..., x^{n-1}\}$ is a complete T-system (although not a D-system) on [0, 1] and that each of $x, x^2, ..., x^{n-1}$ vanishes solely at x = 0. This behavior is in accordance with Theorem 2. Further, the elements $(x - \xi_i)_+^{n-1}$ (i = 1, ..., r) are each degenerate; that is, $\{1, x, ..., x^{n-1}, (x - \xi_i)_+^{n-1}\}$ is degenerate both on $[0, \xi_i]$ and on $[\xi_i, 1]$ (since $(x - \xi_i)^{n-1}$ is contained in span $\{1, x, ..., x^{n-1}\}$). Moreover, $\{\xi_i\}$ is an increasing sequence in keeping with Theorem 3. Finally, in the sense of Remark 3, each of the functions $(x - \xi_i)_+^{n-1}$ involves x^{n-1} , in keeping with the fact that they are degenerate on an interval excluding the left endpoint 0.

WEAK DESCARTES SYSTEMS

References

- 1. S. BERNSTEIN, "Léçons sur les Propriétés Extrémales des Fonctions Analytiques d'une Variable Reélle," pp. 26-37, Gauthier-Villars, Paris, 1926.
- 2. S. KARLIN AND W. J. STUDDEN, "Tchebycheff Systems: With Applications in Analysis and Statistics," Wiley-Interscience, New York, 1966.
- 3. M. G. KREIN AND A. A. NUDEL'MAN, "The Markov Moment Problem and Extremal Problems," AMS Translations, New York, 1977.
- 4. E. LAPIDOT, On Complete Tchebycheff Systems, J. Approx. Theory 23 (1978), 324-331.
- 5. C. A. MICCHELLI, Characterization of Chebyshev Approximation by Weak Markoff Systems, *Computing* 12 (1974), 1-8.
- 6. P. W. SMITH, An Improvement Theorem for Descartes Systems, Proc. Amer. Math. Soc. 70 (1978), 26–30.
- 7. D. ZWICK, Degeneracy in WT-spaces, J. Approx. Theory 41 (1984), 100-113.