Structure of Weak Descartes Systems

D. Zwick
Department of Mathematics, University of Vermont, Burlington, Vermont 05405, U.S.A.

Communicated by Oved Shisha
Received October 30, 1985

Abstract

A weak Descartes system is a basis of functions such that every ordered subset is a weak Tchebycheff system, the canonical example being the usual spline basis involving truncated power functions. By examining the intervals of degeneracy for a WD-system, we show that it is possible to produce a new basis that has a simple and convenient structure similar to the spline basis. © 1988 Academic Press, Inc.

In this paper we will apply results on degeneracy in WT-spaces, some of which were developed in [7], in order to investigate the structure of elements in a weak Descartes system.

Definition 1. Let u_{0}, \ldots, u_{n} be real-valued functions defined on a compact interval $[a, b] .\left\{u_{0}, \ldots, u_{n}\right\}$ is called a weak Descartes (WD) system if $\left\{u_{i_{1}}, \ldots, u_{i_{k}}\right\}$ forms a WT-system for all $0 \leqslant i_{1}<\cdots<i_{k} \leqslant n$. If each of these subsystems is a T-system then $\left\{u_{0}, \ldots, u_{n}\right\}$ is called a Descartes (D) system.

We recall that $\left\{u_{0}, \ldots, u_{n}\right\}$ is a WT-system on $[a, b]$ if

$$
\binom{u_{0}, \ldots, u_{n}}{x_{0}, \ldots, x_{n}}=\operatorname{det}\left\{u_{i}\left(x_{j}\right)\right\}_{i, j=0}^{n} \geqslant 0
$$

for all $a \leqslant x_{0}<\cdots<x_{n} \leqslant b$. If these determinants are all positive then $\left\{u_{0}, \ldots, u_{n}\right\}$ is a T-system; it is a complete T-system if $\left\{u_{0}, \ldots, u_{k}\right\}$ is a T -system for $k=0, \ldots, n$. It follows from Definition 1 that every element in a WD-system is nonnegative and every element in a D-system is positive.

D-systems and WD-systems have been investigated by Karlin and Studden [2] and by Krein and Nudel'man [3], among others. They were apparently introduced by Bernstein [1] and are so called because Descartes' rule of signs holds for elements in the linear span of a D-system (see [2]). According to this rule a function has at most the same number of zeros as its sequence of coefficients has sign changes. For WD-systems a similar result holds with "zeros" replaced by "sign changes."

Bernstein [1] considered approximation by elements in the span of a D-system; this subject was taken up again by Smith [6]. Micchelli characterized best uniform approximation by elements in the span of a WD-system [5] (there the term "weak Markoff system" was used).

Definition 2. Let U be a linear space of functions defined on [a, b]. U is called degenerate if a nontrivial element vanishes on an open subinterval of $[a, b]$; otherwise U is called nondegenerate. A subinterval on which a nontrivial element vanishes is called a degenerate interval for U. If U has a degenerate interval of the form $[a, \xi$) we will say U is a-degenerate; if U has a degenerate interval of the form $(\xi, b]$ we will call $U b$-degenerate.

A basis $\left\{u_{0}, \ldots, u_{n}\right\}$ will be referred to as degenerate when $\operatorname{span}\left\{u_{0}, \ldots, u_{n}\right\}$ is degenerate. Clearly, T -systems are nondegenerate; indeed, it is elementary that $\left\{u_{0}, \ldots, u_{n}\right\}$ is degenerate on an interval I if and only if

$$
\binom{u_{0}, \ldots, u_{n}}{x_{0}, \ldots, x_{n}}=0
$$

for all $x_{0}<\cdots<x_{n}$ in I.
Our first result concerns zeros of elements of a WD-system.

Lemma 1. Let $\left\{u_{0}, \ldots, u_{n}\right\}$ be a WD-system on $[a, b]$ and let $U=\operatorname{span}\left\{u_{i}\right\}_{i=0}^{n}$.
(1) If U is not b-degenerate then $\mathscr{Z}\left(u_{i} ;[a, b)\right) \subseteq \mathscr{Z}\left(u_{i+1} ;[a, b)\right)$ $(i=0, \ldots, n-1)$, where $\mathscr{Z}(u ;[a, b))$ denotes the zeros of u in $[a, b)$.
(2) If U is not a-degenerate then $\mathscr{Z}\left(u_{i} ;(a, b]\right) \subseteq \mathscr{Z}\left(u_{i-1} ;(a, b]\right)$ $(i=1, \ldots, n)$.
(3) If U is neither a-degenerate nor b-degenerate then $\mathscr{Z}\left(u_{i} ;(a, b)\right)=$ $\mathscr{Z}\left(u_{i+1} ;(a, b)\right)(i=0, \ldots, n-1)$.

Proof. (1) Assume that $u_{i}\left(x_{0}\right)=0$ for some $x_{0} \in[a, b)$ and some $0 \leqslant i \leqslant n-1$. As U is not b-degenerate, there is an $x_{1} \in\left(x_{0}, b\right]$ such that $u_{i}\left(x_{1}\right)>0$. Since $\left\{u_{i}, u_{i+1}\right\}$ forms a WT-system we have

$$
0 \leqslant\binom{ u_{i}, u_{i+1}}{x_{0}, x_{1}}=-u_{i}\left(x_{1}\right) \cdot u_{i+1}\left(x_{0}\right)
$$

hence, since u_{i+1} is nonnegative, $u_{i+1}\left(x_{0}\right)=0$.
Part (2) is proved similarly and part (3) is an immediate consequence of the first two parts.

The statements in the following lemma appear in [7] and follow readily from [4, Lemma 1].

Lemma 2. If $\left\{u_{0}, \ldots, u_{n-1}\right\}$ is a T-system on [a,b] and $\left\{u_{0}, \ldots, u_{n-1}, u_{n}\right\}$ is a $W T$-system, then $\left\{u_{0}, \ldots, u_{n}\right\}$ is either degenerate or else a T-system on $[a, b]$. In the former case there is an interval $I \subset[a, b]$ and a unique $p \in \operatorname{span}\left\{u_{0}, \ldots, u_{n-1}\right\}$ such that $u_{n}-p \equiv 0$ on $I, u_{n}-p>0$ to the right of I, and $(-1)^{n}\left(u_{n}-p\right)>0$ to the left of I.

Theorem 1. Let $\left\{u_{0}, \ldots, u_{n}\right\}$ be a nondegenerate WD-system on $[a, b]$. If $u_{i}(a)>0, u_{i}(b)>0(i=0, \ldots, n)$, and at least one of the u_{i} is positive on $[a, b]$, then $\left\{u_{0}, \ldots, u_{n}\right\}$ is a D-system.

Proof. By Lemma 1 and the assumptions on u_{0}, \ldots, u_{n}, it follows that $u_{i}>0 \quad(i=0, \ldots, n)$. For any $0 \leqslant i_{1}<\cdots<i_{k} \leqslant n$ we may now apply Lemma 2 successively to $\left\{u_{i_{1}}, \ldots, u_{i_{j}}\right\}(j=2, \ldots, k)$ to show that $\left\{u_{i_{1}}, \ldots, u_{i_{k}}\right\}$ is a (complete) T -system on $[a, b]\left(\left\{u_{i_{1}}\right\}\right.$ is a one-dimensional T-system since $u_{i_{1}}>0$). Hence $\left\{u_{0}, \ldots, u_{n}\right\}$ is a D-system.

Corollary 1. If $\left\{u_{0}, \ldots, u_{n}\right\}$ is a nondegenerate WD-system on $[a, b]$ with $u_{0}>0$ and $u_{i}(a)>0(i=1, \ldots, n)$ then $\left\{u_{0}, \ldots, u_{n}\right\}$ is a D-system on $[a, b]$.

Proof. From Lemma 2, $\left\{u_{0}, u_{i}\right\}$ is a T-system of dimension 2, from which it follows that u_{i} / u_{0} is strictly increasing for $i=1, \ldots, n$. In particular, $u_{i}(b)>0(i=1, \ldots, n)$. Corollary 1 now follows from Theorem 1 .

Theorem 2. Let $\left\{u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{r}\right\}$ be a WD-system on $[a, b]$ such that $\left\{u_{1}, \ldots, u_{n}\right\}$ is a T-system, and assume that $u_{1}(b)>0$. Then the following statements are valid:
(1) $\left\{u_{1}, \ldots, u_{n}\right\}$ is a complete T-system; if $u_{i}(a)>0(i=2, \ldots, n)$ then $\left\{u_{1}, \ldots, u_{n}\right\}$ is a D-system. In any case, u_{2}, \ldots, u_{n} are positive in $(a, b]$.
(2) If for some $2 \leqslant i \leqslant n, u_{i}(a)=0$ then $u_{j}(a)=0$ for all $j=i, \ldots, n$ and $v_{j}(a)=0$ for all $j=1, \ldots, r$.

Proof. We observe that $u_{1}>0$ in $[a, b)$ since otherwise Lemma 1 implies that the u_{i} 's share a common zero, an impossibility for a T-system. Thus u_{1} is positive in $[a, b]$ and we can use Lemma 2 (as in the proof of Theorem 1) to show that $\left\{u_{1}, \ldots, u_{n}\right\}$ is a complete T-system. If, in addition, $u_{i}(a)>0(i=1, \ldots, n)$, then, by Corollary $1,\left\{u_{1}, \ldots, u_{n}\right\}$ is a D-system. In any case, u_{2}, \ldots, u_{n} must be positive in ($\left.a, b\right]$ since $u_{1}>0$ implies that $\left\{1, u_{i} / u_{1}\right\}$ is a T -system for each $i=2, \ldots, n$, so that u_{i} / u_{1} is strictly increasing in $[a, b]$. This proves part (1). Part (2) follows from the proof of Lemma 1 , since $u_{i}(b)>0(i=1, \ldots, n)$.

If $\left\{u_{0}, \ldots, u_{n}\right\}$ is a WD-system on $[a, b]$ with $u_{0}>0$ then, by Lemma 2, $\left\{u_{0}, u_{1}\right\}$ is either degenerate or else a T-system. Applying this analysis repeatedly, we see that there is a largest integer $k \geqslant 1$ such that $\left\{u_{0}, \ldots, u_{k-1}\right\}$ is a T-system (and thus a complete T-system). The classic example of such a system of functions is the basis

$$
\left\{1, x, \ldots, x^{n-1},\left(x-\xi_{1}\right)_{+}^{n-1}, \ldots,\left(x-\xi_{r}\right)_{+}^{n-1}\right\}
$$

for the splines of degree $n-1$ on $[0,1]$ with simple knots ξ_{1}, \ldots, ξ_{r} (see [5]). Here $(x-\xi)_{+}^{n-1}$ is a truncated power function and equals $(x-\xi)^{n-1}$ for $x>\xi$ and is zero elsewhere. In order for this basis to be a WD-system it is crucial that $0<\xi_{1}<\cdots<\xi_{r}<1$. Define $u_{i}(x)=x^{i-1}(i=1, \ldots, n)$ and $v_{i}(x)=\left(x-\xi_{i}\right)_{+}^{n-1} \quad(i=1, \ldots, r)$. We observe that, for each $1 \leqslant i \leqslant r$, $\left\{u_{1}, \ldots, u_{n}, v_{i}\right\}$ is a degenerate WT-system, being degenerate both on $\left[0, \xi_{i}\right]$ and on $\left[\xi_{i}, 1\right]$. Moreover, as just noted, $\left\{\xi_{i}\right\}_{i=1}^{r}$ is an increasing sequence. Presently, we will demonstrate that these phenomena are intrinsically related to the weak Descartes nature of the spline basis.

Definition 3. A linear space U is said to be maximally degenerate on an interval I if it is degenerate on I but not on any interval strictly containing I.

Note that there may be many intervals on which U is maximally degenerate. If U comprises only continuous functions, then all maximal degenerate intervals of U are closed.

Lemma 3. Let $\left\{u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{r}\right\}$ be a WT-system on $[a, b]$ such that $\left\{u_{1}, \ldots, u_{n}\right\}$ is a T-system and assume that, for some $1 \leqslant i \leqslant r,\left\{u_{1}, \ldots, u_{n}, v_{i}\right\}$ is maximally degenerate on an interval I whose interior is (α, β). Then the following statements are valid:
(1) If I exludes b then $\left\{u_{1}, \ldots, u_{n}, v_{j}\right\}$ is degenerate on I for each $j=i, \ldots, r$.
(2) If I excludes a then $\left\{u_{1}, \ldots, u_{n}, v_{j}\right\}$ is degenerate on I for each $j=1, \ldots, i$.
(3) If I excludes both a and b then $\left\{u_{1}, \ldots, u_{n}, v_{i-1}\right\}$ is either maximally degenerate on I or degenerate (at least) on $(\alpha, b]$ and $\left\{u_{1}, \ldots, u_{n}, v_{i+1}\right\}$ is either maximally degenerate on I or degenerate on $[a, \beta)$.

Proof. (1) Choose points $x_{1}<\cdots<x_{n+1}$ in I. By Lemma 2, we may assume that $v_{i} \equiv 0$ on I and $v_{i}(b)>0$. Then for $i<j \leqslant r$

$$
0 \leqslant\binom{ u_{1}, \ldots, u_{n}, v_{i}, v_{j}}{x_{1}, \ldots, x_{n+1}, b}=-v_{i}(b) \cdot\binom{u_{1}, \ldots, u_{n}, v_{j}}{x_{1}, \ldots, x_{n+1}}
$$

Hence, since $\left\{u_{1}, \ldots, u_{n}, v_{j}\right\}$ is a WT-system, it follows that

$$
\binom{u_{1}, \ldots, u_{n}, v_{j}}{x_{1}, \ldots, x_{n+1}}=0
$$

for all $x_{1}<\cdots<x_{n+1}$ in I and so $\left\{u_{1}, \ldots, u_{n}, v_{j}\right\}$ is degenerate on I.
(2) As before, we may assume that $v_{i} \equiv 0$ on I and, in this case, $(-1)^{n} v_{i}(a)>0$. The proof now proceeds as in (1).
(3) By (2), $\left\{u_{1}, \ldots, u_{n}, v_{i-1}\right\}$ is degenerate on I. Suppose it is not maximally degenerate there and not degenerate on ($\alpha, b]$. Then, by (1), $\left\{u_{1}, \ldots, u_{n}, v_{i}\right\}$ must be degenerate on some interval properly containing I, a contradiction to the maximality of I. Similarly, it follows from (2) that $\left\{u_{1}, \ldots, u_{n}, v_{i+1}\right\}$ is either maximally degenerate on I or ese degenerate on $[a, \beta)$.

ThEOREM 3. Let $\left\{u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{r}\right\}$ be a WT-system of continuous functions on $[a, b]$ such that $\left\{u_{1}, \ldots, u_{n}\right\}$ is a T-system ${ }^{1}$ and such that, for all $1 \leqslant i_{1}<\cdots<i_{k} \leqslant r,\left\{u_{1}, \ldots, u_{n}, v_{i_{1}}, \ldots, v_{i_{k}}\right\}$ is a WT-system. Then there exist elements $\tilde{v}_{1}, \ldots, \tilde{v}_{r}$ such that $\left\{u_{1}, \ldots, u_{n}, \tilde{v}_{1}, \ldots, \tilde{v}_{r}\right\}$ is a basis for $\operatorname{span}\left\{u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{r}\right\}$ with the following properties:
(1) $\left\{u_{1}, \ldots, u_{n}, \tilde{v}_{i_{1}}, \ldots, \tilde{v}_{i_{k}}\right\}$ is a WT-system for all $1 \leqslant i_{1}<\cdots<i_{k} \leqslant r$.
(2) The indices $\{1, \ldots, r\}$ may be partitioned into three segments (some possibly empty) such that
(a) for each j in the first segment $\tilde{v}_{j} \equiv 0$ on an interval $\left[\alpha_{j}, b\right]$ and $(-1)^{n} \tilde{v}_{j}>0$ in $\left[a, \alpha_{j}\right) ;$
(b) either $\left\{u_{1}, \ldots, u_{n}, \tilde{v}_{j}\right\}$ is a T-system for every j in the second segment, or else there is an interval $[\alpha, \beta], a<\alpha<\beta<b$, on which every \tilde{v}_{j} associated with the second segment vanishes, $\tilde{v}_{j}>0$ in $(\beta, b]$, and $(-1)^{n} \tilde{v}_{j}>0$ in $[a, \alpha)$;
(c) for each j in the last segment \tilde{v}_{j} vanishes on an interval $\left[a, \beta_{j}\right]$ and $\tilde{v}_{j}>0$ in $\left(\beta_{j}, b\right]$.
(3) The sequences $\left\{\alpha_{j}\right\}$ and $\left\{\beta_{j}\right\}$ are nondecreasing and satisfy $\max _{j} \alpha_{j} \leqslant \alpha \leqslant \beta \leqslant \min _{j} \beta_{j}$.

Proof. For every $1 \leqslant j \leqslant r$ for which $\left\{u_{1}, \ldots, u_{n}, v_{j}\right\}$ is nondegenerate (and hence a T-system) define $\tilde{v}_{j}=v_{j}$. Otherwise, $\left\{u_{1}, \ldots, u_{n}, v_{j}\right\}$ is maximally degenerate on some closed interval $\left[\alpha_{j}, \beta_{j}\right]$. Choosing such an interval, we define $\tilde{v}_{j}=v_{j}-p_{j}$, with $p_{j} \in \operatorname{span}\left\{u_{1}, \ldots, u_{n}\right\}$ as in Lemma 2. Then, for any $1 \leqslant i_{1}<\cdots<i_{k} \leqslant r$ and $a \leqslant x_{1}<\cdots<x_{n+k} \leqslant b$,

$$
0 \leqslant\binom{ u_{1}, \ldots, u_{n} v_{i_{1}}, \ldots, v_{i_{k}}}{x_{1}, \ldots, x_{n+k}}=\binom{u_{1}, \ldots, u_{n}, \tilde{v}_{i_{1}}, \ldots, \tilde{v}_{i_{k}}}{x_{1}, \ldots, x_{n+k}}
$$

[^0]which proves (1). By Lemma 3, we may select the intervals $\left[\alpha_{j}, \beta_{j}\right]$, and thus the corresponding elements \tilde{v}_{j}, so that all \tilde{v}_{j} such that $\left\{u_{1}, \ldots, u_{n}, v_{j}\right\}$ is b-degenerate (briefly, " b-degenerate elements") come first, followed by nondegenerate elements or else a sequence of elements all maximally degenerate on the same interior interval, and finally any a-degenerate elements. The sign structure of these elements is dictated by Lemma 2. This proves part (2) of Theorem 3. By our choice of intervals $\left[\alpha_{j}, \beta_{j}\right.$] and from Lemma 3 it follows that, excluding those α_{j} equal to a and those β_{j} equal to b, the α_{j} and the β_{j} form nondecreasing sequences with $\max _{j} \alpha_{j} \leqslant \alpha \leqslant \beta<$ $\min _{j} \beta_{j}$.

Remarks. (1) A result similar to Theorem 3 holds when continuity is not assumed. In that case, of course, the intervals of degeneracy need not be closed.
(2) It follows from Lemma 3 that if $\left\{\tilde{v}_{1}, \ldots, \tilde{v}_{r}\right\}$ contains any "nondegenerate elements" (as in Theorem $3(2 \mathrm{~b})$) then the \tilde{v}_{j} are unique. For if \tilde{v}_{i} is nondegenerate then, for $j \geqslant i, \tilde{v}_{j}$ may only be nondegenerate or a-degenerate, and for $j \leqslant i$ only nondegenerate or b-degenerate. Thus, by the uniqueness of the p_{j} only one choice is possible for the $\tilde{v}_{j}(j=1, \ldots, r)$.
(3) If, in Theorem $3,\left\{u_{1}, \ldots, u_{n-1}\right\}$ is a T-system as well, then any v_{j}, such that $\left\{u_{1}, \ldots, u_{n}, v_{j}\right\}$ is degenerate on an interval excluding a, must "involve" u_{n} in the sense that $p_{j}=\sum_{i=1}^{n} a_{i} u_{i}$ with $a_{n} \neq 0$ (otherwise $\operatorname{span}\left\{u_{1}, \ldots, u_{n}\right\}$ would be degenerate). Hence if $\left\{u_{1}, \ldots, u_{n-1}, v_{1}, \ldots, v_{r}\right\}^{\text {. }}$ satisfies the assumptions of Theorem 3 , then the \tilde{v}_{i} corresponding to this system are all either nondegenerate or a-degenerate. This indicates that if it is possible to "insert" a function u_{n+1} into the system $\left\{u_{1}, \ldots, u_{n}\right.$, $\left.v_{1}, \ldots, v_{r}\right\}$ such that the new system satisfies the assumptions of Theorem 3, then the only possibility is that $\tilde{v}_{1}, \ldots, \tilde{v}_{r}$ are all nondegenerate or a degenerate.

Example 1. We return to the spline basis

$$
\left\{1, x, \ldots, x^{n-1},\left(x-\xi_{1}\right)_{+}^{n-1}, \ldots,\left(x-\xi_{r}\right)_{+}^{n-1}\right\}
$$

for $x \in[0,1]$ and $0<\xi_{1}<\cdots<\xi_{r}<1$. As remarked earlier, this basis forms a WD-system on $[0,1]$. We observe first that $\left\{1, x, \ldots, x^{n-1}\right\}$ is a complete T-system (although not a D-system) on [0,1] and that each of $x, x^{2}, \ldots, x^{n-1}$ vanishes solely at $x=0$. This behavior is in accordance with Theorem 2. Further, the elements $\left(x-\xi_{i}\right)_{+}^{n-1} \quad(i=1, \ldots, r)$ are each degenerate; that is, $\left\{1, x, \ldots, x^{n-1},\left(x-\xi_{i}\right)_{+}^{n-1}\right\}$ is degenerate both on $\left[0, \xi_{i}\right]$ and on $\left[\xi_{i}, 1\right]$ (since $\left(x-\xi_{i}\right)^{n-1}$ is contained in $\operatorname{span}\left\{1, x, \ldots, x^{n-1}\right\}$). Moreover, $\left\{\xi_{i}\right\}$ is an increasing sequence in keeping with Theorem 3. Finally, in the sense of Remark 3, each of the functions $\left(x-\xi_{i}\right)_{+}^{n-1}$ involves x^{n-1}, in keeping with the fact that they are degenerate on an interval excluding the left endpoint 0 .

References

1. S. Bernstein, "Léçons sur les Propriétés Extrémales des Fonctions Analytiques d’une Variable Reélle," pp. 26-37, Gauthier-Villars, Paris, 1926.
2. S. Karlin and W. J. Studden, "Tchebycheff Systems: With Applications in Analysis and Statistics," Wiley-Interscience, New York, 1966.
3. M. G. Krein and A. A. Nudel'man, "The Markov Moment Problem and Extremal Problems," AMS Translations, New York, 1977.
4. E. Lapidot, On Complete Tchebycheff Systems, J. Approx. Theory 23 (1978), 324-331.
5. C. A. Micchelli, Characterization of Chebyshev Approximation by Weak Markoff Systems, Computing 12 (1974), 1-8.
6. P. W. Smith, An Improvement Theorem for Descartes Systems, Proc. Amer. Math. Soc. 70 (1978), 26-30.
7. D. Zwick, Degeneracy in WT-spaces, J. Approx. Theory 41 (1984), 100-113.

[^0]: ${ }^{1}$ Theorem 3 will normally be applied when n is maximal in this respect.

