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A weak Descartes system is a basis of functions such that every ordered subset
is a weak TchebychelT system, the canonical example being the usual spline basis
involving truncated power functions. By examining the intervals of degeneracy for
a WD-system, we show that it is possible to produce a new basis that has a simple
and convenient structure similar to the spline basis. © 1988 Academic Press, Inc.

In this paper we will apply results on degeneracy in WT-spaces, some of
which were developed in [7], in order to investigate the structure of
elements in a weak Descartes system.

DEFINITION 1. Let Uo, , Un be real-valued functions defined on a com-
pact interval [a, b]. {uo, , un} is called a weak Descartes (WD) system if
{u it , ... , U ik } forms a WT-system for all 0 ~ i 1 < ... < i k ~ n. If each of these
subsystems is aT-system then {uo, ..., Un} is called a Descartes (D) system.

We recall that {uo, ..., un} is a WT-system on [a, b] if

for all a ~ X o< ... < X n ~ b. If these determinants are all posItIve then
{uo, ..., un} is a T-system; it is a complete T-system if {uo, ..., ud is a
T-system for k = 0, ..., n. It follows from Definition 1 that every element in
a WD-system is nonnegative and every element in a D-system is positive.

D-systems and WD-systems have been investigated by Karlin and
Studden [2] and by Krein and Nudel'man [3], among others. They were
apparently introduced by Bernstein II] and are so called because Descar
tes' rule of signs holds for elements in the linear span of a D-system (see
[2]). According to this rule a function has at most the same number of
zeros as its sequence of coefficients has sign changes. For WD-systems a
similar result holds with "zeros" replaced by "sign changes."
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Bernstein [1] considered approximation by elements in the span of
a D-system; this subject was taken up again by Smith [6]. Micchelli
characterized best uniform approximation by elements in the span of a
WD-system [5] (there the term "weak Markoff system" was used).

DEFINITION 2. Let U be a linear space of functions defined on [a, b]. U
is called degenerate if a nontrivial element vanishes on an open subinterval
of [a, b]; otherwise U is called nondegenerate. A subinterval on which a
nontrivial element vanishes is called a degenerate interval for U. If U has a
degenerate interval of the form [a, 0 we will say U is a-degenerate; if U has
a degenerate interval of the form (e, b] we will call U b-degenerate.

A basis {uo, ... , Un} will be referred to as degenerate when
span {Uo, ..., Un} is degenerate. Clearly, T-systems are nondegenerate;
indeed, it is elementary that {uo, ..., Un} is degenerate on an interval I if and
only if

for all xo< ... <xn in I.
Our first result concerns zeros of elements of a WD-system.

LEMMA 1. Let {uo, ... , Un} be a WD-system on [a, b] and let
U = span{ U i }7~o.

(1) If U is not b-degenerate then ~(Ui; [a,b))S~(Ui+l; [a, b))
(i = 0, ..., n - 1), where ~(u; [a, b)) denotes the zeros of U in [a, b).

(2) If U is not a-degenerate then ~(ui;(a,b])s~(ui~l;(a,b])

(i=I, ... ,n).

(3) If U is neither a-degenerate nor b-degenerate then ~(Ui; (a, b))=
~(Ui+l; (a, b)) (i=O, ...,n-l).

Proof (l) Assume that ui(XO) = 0 for some XoE [a, b) and some
0::::; i::::; n - 1. As U is not b-degenerate, there is an Xl E (Xo, b] such that
ui(xd>O. Since {ui, ui+d forms a WT-system we have

hence, since ui + 1 is nonnegative, U i + l(XO) = O.
Part (2) is proved similarly and part (3) is an immediate consequence of

the first two parts. I
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The statements in the following lemma appear in [7] and follow readily
from [4, Lemma 1].

LEMMA 2. If {uo, ..., Un_ d is a T-system on [a, b] and
{uo, ..., Un-J' un} is a WT-system, then {uo, ..., un} is either degenerate or
else a T-system on [a, b]. In the former case there is an interval Ie [a, b]
and a unique p E span {Uo, ..., un- J} such that Un - P == 0 on I, Un - P > 0 to
the right of I, and (-It(un- p) > 0 to the left of I.

THEOREM 1. Let {uo, ..., un} be a nondegenerate WD-system on [a, b].
If ui(a) > 0, ui(b) > 0 (i = 0, ..., n), and at least one of the Ui is positive on
[a, b], then {uo, ..., Un} is aD-system.

Proof By Lemma I and the assumptions on uo, ..., Un' it follows that
ui>O (i=O, ...,n). For any O~iJ< ... <ik~n we may now apply
Lemma 2 successively to {u it , ..., uiJ (j = 2, ..., k) to show that {u it , ..., uiJ
is a (complete) T-system on [a,b] ({u;t} is a one-dimensional T-system
since uit > 0). Hence {uo, ..., Un} is a D-system. I

COROLLARY 1. If {uo, ..., Un} is a nondegenerate WD-system on [a, b]
with uo>O and ui(a»O (i=I, ...,n) then {uo, ...,un} is a D-system on
[a, b].

Proof From Lemma 2, {uo, ui} is a T-system of dimension 2, from
which it follows that ui/Uo is strictly increasing for i = 1, ..., n. In particular,
Ui(b) > 0 (i = I, ..., n). Corollary 1 now follows from Theorem 1. I

THEOREM 2. Let {UI>""un,vJ, ...,vr } be a WD-system on [a,b] such
that {u J , ... , un} is a T-system, and assume that uJ(b»O. Then thefollowing
statements are valid:

(I) {u 1 , ... , un} is a complete T-system; if ui(a»O (i=2, ..., n) then
{uJ' ..., Un} is a D-system. In any case, U2' ..., Un are positive in (a, b].

(2) If for some 2 ~ i~ n, u;(a) = 0 then uia) =0 for all j = i, ... , nand
via)=Ofor all j= I, ..., r.

Proof We observe that U J > 0 in [a, b) since otherwise Lemma 1
implies that the u/s share a common zero, an impossibility for aT-system.
Thus U J is positive in [a, b] and we can use Lemma 2 (as in the proof of
Theorem 1) to show that {u I> ... , Un} is a complete T-system. If, in addition,
ui(a»O (i= 1, ..., n), then, by Corollary 1, {uJ' ..., un} is aD-system.
In any case, U2, ..., Un must be positive in (a, b] since UJ> 0 implies
that {I, u";ud is a T-system for each i=2, ... , n, so that ui/u J is strictly
increasing in [a, b]. This proves part (1). Part (2) follows from the proof
of Lemma 1, since ui(b»O (i= I, ... , n). I
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If {UO' ..., Un} is a WD-system on [a, b] with Uo > 0 then, by Lemma 2,
{uo, ud is either degenerate or else a T-system. Applying this analysis
repeatedly, we see thai there is a largest integer k ~ 1 such that
{uo, ..., uk-d is a T-system (and thus a complete T-system). The classic
example of such a system of functions is the basis

{1, x, ..., x n- I, (x - ~ Itt--1, ..., (x - ~r)''t-- I }

for the splines of degree n - 1 on [0, 1] with simple knots ~ I' ..., ~r (see
[5]). Here (X-~tt--I is a truncated power function and equals (X-~t-I
for x > ~ and is zero elsewhere. In order for this basis to be a WD-system
it is crucial that 0 < ~1< .. , < ~r < 1. Define ui(x) =Xi-I (i = 1, ..., n) and
vlx)=(x-U:- I (i=1,.,.,r). We observe that, for each 1~i~r,

{UI' ..., Un' Vi} is a degenerate WT-system, being degenerate both on [0, ~;]

and on [~i' 1]. Moreover, as just noted, g;} ~ = I is an increasing sequence.
Presently, we will demonstrate that these phenomena are intrinsically
related to the weak Descartes nature of the spline basis.

DEFINITION 3. A linear space V is said to be maximally degenerate on
an interval I if it is degenerate on I but not on any interval strictly
containing I.

Note that there may be many intervals on which V is maximally
degenerate. If V comprises only continuous functions, then all maximal
degenerate intervals of V are closed.

LEMMA 3. Let {u l , ..., Un' VI' ..., vr} be a WT-system on [a, b] such that
{u l , ,.., Un} is a T-system and assume that, for some 1~ i ~ r, {UI' ..., Un' Vi}
is maximally degenerate on an interval I whose interior is (iX, P). Then the
following statements are valid:

(1) If I exludes b then {u l , .." Un' vJ is degenerate on I for each
j= i, .,', r.

(2) If I excludes a then {u l , ',., Un' vJ is degenerate on I for each
j= 1, .." i.

(3) If I excludes both a and b then {u l , ,.., Un' vi-d is either maxi
mally degenerate on lor degenerate (at least) on (iX, b] and {u I' ,." Un' Vi + I }

is either maximally degenerate on lor degenerate on [a, f3).

Proof (1) Choose points x I < ... < Xn+ I in I. By Lemma 2, we may
assume that vi=O on land vi(b) >0. Then for i<j~r

O~ (UI, , Un' Vi' Vi) = -vi(b) , (UI, , Un' Vi).
XI' , Xn+l, b XI' , Xn+1
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Hence, since {u" ..., Un' Vj} is a WT-system, it follows that

(
U1' , Un' Vj)=O

XI' , Xn+l
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for all XI < '" <xn + 1 in I and so rUt, ..., Un' Vj} is degenerate on I.

(2) As before, we may assume that Vi == 0 on I and, in this case,
( -1 )" v;(a) > O. The proof now proceeds as in (1).

(3) By (2), {u" ..., Un' vi-d is degenerate on I. Suppose it is not
maximally degenerate there and not degenerate on (a, b]. Then, by (1),
{ UI' ... , Un' Vi} must be degenerate on some interval properly containing I,
a contradiction to the maximality of I. Similarly, it follows from (2) that
{UI> .•. , Un' Vi + d is either maximally degenerate on I or ese degenerate on
[a, f3). I

THEOREM 3. Let {UI, ..., Un' VI' ..., vr } be a WT-system of continuous
functions on [a, b] such that {UI, ..., un} is a T-system l and such thatJor all
1~il < ... <ik~r, {UI, ..., Un' ViI' ..., Vik } is a WT-system. Then there exist
elements VI> ... ,vr such that {uI, ...,un, VI""'Vr } is a basis for
span {u I' ..., Un' VI' ... , Vr} with the following properties:

(l) {U I , ... , Un' ViI' , viJ is a WT-system for aliI ~ i l < ... < ik~ r.

(2) The indices {1, , r} may be partitioned into three segments (some
possibly empty) such that

(a) for each j in theftrst segment vj==O on an interval [rxj,b] and
(-I)nvj>O in [a, aj);

(b) either {UI' ..., Un' Vj} is a T-system for every j in the second
segment, or else there is an interval [a, f3], a < a < f3 < b, on which every vj
associated with the second segment vanishes, vj > 0 in (f3, b], and (-1 )" vj > 0
in [a, a);

(c) for each j in the last segment vj vanishes on an interval [a, Pj]
and vj > 0 in (f3j , b].

(3) The sequences {aJ and {Pj } are nondecreasing and satisfy
maxj aj~ a ~ P~ minj f3j'

Proof For every 1~j~r for which {UI' ..., Un' Vj} is nondegenerate
(and hence a T-system) define vj = Vj' Otherwise, {u I' ... , Un' Vj } is
maximally degenerate on some closed interval [aj' Pj]. Choosing such an
interval, we define vj=vj - Pj' with pj Espan{u l1 ... , un} as in Lemma 2.
Then, for any 1 ~il < ... <ik~r and a~xI < ... <xn+k~b,

o~ (U 1 , ••• , Un Vii' ..., Vik ) = (UI1 ...,Un' Vii' ..., Vik ),
XI' ..., Xn+ k XI' ... , Xn+ k

I Theorem 3 will normally be applied when n is maximal in this respect.
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which proves (1). By Lemma 3, we may select the intervals [ocj ' Pj ], and
thus the corresponding elements vj ' so that all vj such that {u I , ... , Un' vJ
is b-degenerate (briefly, "b-degenerate elements") come first, followed by
nondegenerate elements or else a sequence of elements all maximally
degenerate on the same interior interval, and finally any a-degenerate
elements. The sign structure of these elements is dictated by Lemma 2. This
proves part (2) of Theorem 3. By our choice of intervals [ocj ' PJ and from
Lemma 3 it follows that, excluding those ocj equal to a and those Pj equal
to b, the ocj and the Pi form nondecreasing sequences with maxj OCj~ OC ~ P<
minj Pj' I

Remarks. (1) A result similar to Theorem 3 holds when continuity is
not assumed. In that case, of course, the intervals of degeneracy need not
be closed.

(2) It follows from Lemma 3 that if {VI' ..., vr } contains any "non
degenerate elements" (as in Theorem 3 (2b)) then the Vi are unique. For
if Vi is nondegenerate then, for j ~ i, vj may only be nondegenerate or
a-degenerate, and for j ~ i only nondegenerate or b-degenerate. Thus, by
the uniqueness of the Pj only one choice is possible for the vj (j= 1, ..., r).

(3) If, in Theorem 3, {UI, ..., un-d is a T-system as well, then any Vj'

such that {UI, ..., Un' Vj} is degenerate on an interval excluding a, must
"involve" Un in the sense that Pj = 1:,7= I aiui with an # 0 (otherwise
span{ul, ...,un } would be degenerate). Hence if {uI, ...,Un _ l , vl, ...,vr }'

satisfies the assumptions of Theorem 3, then the Vi corresponding to this
system are all either nondegenerate or a-degenerate. This indicates that if
it is possible to "insert" a function Un+l into the system {UI' ..., Un'

VI' ... , vr } such that the new system satisfies the assumptions of Theorem 3,
then the only possibility is that VI' ... , Vr are all nondegenerate or a
degenerate.

EXAMPLE 1. We return to the spline basis

{1, x, ..., xn- I, (x - ~ I Y'+_- I, ... , (x - ~rY:-- I }

for x E [0, 1] and 0 < ~ I < ... < ~ r < 1. As remarked earlier, this basis
forms a WD-system on [0, 1]. We observe first that {l, x, ..., x n

-
I

} is a
complete T-system (although not a D-system) on [0, 1] and that each of
x, x 2

, ... , x n
-

I vanishes solely at x = O. This behavior is in accordance with
Theorem 2. Further, the elements (x - U:- I (i = 1, ..., r) are each
degenerate; that is, {1, x, ..., x n

- I, (x - U:- I} is degenerate both on
[O,~J and on [~i,1] (since (X-~it-I is contained in
span {1, x, ..., x n - I }). Moreover, {~i} is an increasing sequence in keeping
with Theorem 3. Finally, in the sense of Remark 3, each of the functions
(X-~i):-I involves x n

-
I, in keeping with the fact that they are degenerate

on an interval excluding the left endpoint O.
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